Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Chemosphere ; 243: 125389, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31765893

RESUMO

The present study is aimed to isolate and identify polycyclic aromatic hydrocarbons (PAHs) degrading bacteria from brackish water and to assess the biodegradation efficiency against low and high molecular weight PAHs. Among 15 isolates, the isolate designated as RM effectively degraded 100 mg/L of phenanthrene (Phe) (67.0%), pyrene (Pyr) (63.0%), naphthalene (NaP) (60.0%), and benzo [a]pyrene (BaP) (58.0%) after 7 days of incubation. Carbon sources, pH, and salinity of the culture medium were optimized to enhance the growth and PAHs biodegradation of the isolate RM. Sucrose was found to be an excellent carbon source to enhance PAHs biodegradation (Phe, 75.0; Pyr, 68.5; NaP, 62.5; and BaP, 59.5%). Furthermore, the isolate showed enhanced degradation at pH 7.0 and 4% salinity. The isolate RM was identified as Halomonas sp. based on partial 16S rDNA gene sequence analysis. The results indicated that the isolate RM (i.e., Halomonas sp.) has the potential to be used in remediation of oil spills in the marine ecosystem.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Halomonas/isolamento & purificação , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Águas Salinas , Benzo(a)pireno/metabolismo , Ecossistema , Halomonas/metabolismo , Peso Molecular , Naftalenos/metabolismo , Pirenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...